- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
第18届国际篮联篮球世界杯将于2019年8月31日至9月15日在中国北京、广州等八座城市举行.届时,甲、乙、丙、丁四名篮球世界杯志愿者将随机分到
、
、
三个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人不在同一个岗位服务的概率;
(2)设随机变量
为这四名志愿者中参加
岗位服务的人数,求
的分布列及数学期望
.



(1)求甲、乙两人不在同一个岗位服务的概率;
(2)设随机变量




甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、3、4的4个黑球,从甲、乙两盒中各抽取一个小球.
(1)求抽到红球和黑球的标号都是偶数的概率;
(2)现从甲乙两盒各随机抽取1个小球,记其标号的差的绝对值为
,求
的分布列和数学期望.
(1)求抽到红球和黑球的标号都是偶数的概率;
(2)现从甲乙两盒各随机抽取1个小球,记其标号的差的绝对值为


为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为
;现记“该选手在回答完
个问题后的总得分为
”.
(1)求
且
(
)的概率;
(2)记
,求
的分布列,并计算数学期望
.



(1)求



(2)记



某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为
,得到乙、丙两公司面试的概率均为
,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若
,求随机变量X的分布列与均值.



我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为
,女性观众认为《流浪地球》好看的概率为
.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).
(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设
表示这4名观众中认为《流浪地球》好看的人数,求
的分布列与数学期望.


(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设

