- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近些年来,我国电子商务行业得到高速发展.2009年,阿里巴巴集团开始推出双11打折促销活动,2014年阿里巴巴宣布取得双11注册商标,双11正式成为购物狂欢节.2016年双11当天,阿里巴巴旗下的购物平台24小时的销售业绩就高达1207亿多人民币.与此同时,国家监管部门推出了针对电商的商品质量和服务质量的评价系统,由在购物平台进行了交易的购物者对电商的商品质量和服务质量作出评价.现从评价系统中任意选出1000次成功交易,并对其评价进行统计发现,对商品质量做出好评的交易有750次,对服务质量做出好评的交易有800次(假设顾客对商品质量和服务质量的评价互不影响),现将频率视为概率.
(1)从评价系统中任意选出一次成功交易,求其评价对商品质量和服务质量都是好评的概率;
(2)已知某人在该购物平台购物4次,每次都对商品质量和服务质量做出了评价.设此人对商品质量和服务质量都是好评的次数为随机变量
,求
的分布列和数学期望.
(1)从评价系统中任意选出一次成功交易,求其评价对商品质量和服务质量都是好评的概率;
(2)已知某人在该购物平台购物4次,每次都对商品质量和服务质量做出了评价.设此人对商品质量和服务质量都是好评的次数为随机变量


某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,
,
,且各人回答正确与否相互之间没有影响,用
表示乙队的总得分.
(Ⅰ)求
的分布列及数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.





(Ⅰ)求

(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.
甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为
,则甲以
的比分获胜的概率为______.


山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:
)服从正态分布
,则直径在
内的概率为( )
附:若
,则
,
.



附:若



A.0.6826 | B.0.8413 | C.0.8185 | D.0.9544 |
甲、乙两类水果的质量(单位:
)分别服从正态分布
,其正态分布的密度曲线如图所示,则下列说法错误的是( )




A.甲类水果的平均质量![]() |
B.甲类水果的质量比乙类水果的质量更集中于平均值左右 |
C.甲类水果的平均质量比乙类水果的质量小 |
D.乙类水果的质量服从正态分布的参数![]() |
某校组织《最强大脑》
赛,最终
、
两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手
,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛
队选手获胜的概率均为
,且各局比赛结果相互独立,比赛结束时
队的得分高于
队的得分的概率为()








A.![]() | B.![]() | C.![]() | D.![]() |