- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设甲、乙、丙三位老人是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.
某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩合格的概率分别为
,
,
,若对这三名短跑运动员的100米跑的成绩进行一次检测.
(1)求三人都合格的概率;
(2)求三人都不合格的概率;
(3)求出现几人合格的概率最大.



(1)求三人都合格的概率;
(2)求三人都不合格的概率;
(3)求出现几人合格的概率最大.
某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2018年享受此项政策的自主创业人员中抽取了100人进行调查统计,选择的贷款期限的频数如下表:
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
频数 | 20 | 40 | 20 | 10 | 10 |
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的费用,写出X的分布列.