地的天气预报显示,地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生0—9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:

则这三天中至少有两天有强浓雾的概率近似为(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为(   )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
从区间随机抽取个数,…,,…,,组成坐标平面上的个点,…,,其中到原点距离小于的点有个,用随机模拟的方法得到的圆周率的近似值为(   )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图所示,作一个面积约为的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为(    )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,就是用圆内接正多边形的面积去无限逼近圆的面积并以此求取圆周率的方法.如图所示,正十二边形的中心为圆心,圆的半径为2.现随机向圆内投放粒豆子,其中有粒豆子落在正十二边形内(),则圆周率的近似值是(  )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
法国数学家布丰提出一种计算圆周率的方法——随机投针法,受其启发,我们设计如下实验来估计的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对;再统计两数的平方和小于1的数对的个数;最后再根据统计数来估计的值.已知某同学一次试验统计出,则其试验估计为______.
当前题号:6 | 题型:填空题 | 难度:0.99
设计一个随机试验,使一个事件的概率与某个未知数有关,然后通过重复试验,以频率估计概率,即可求得未知数的近似解,这种随机试验在数学上称为随机模拟法,也称为蒙特卡洛法。比如要计算一个正方形内部不规则图形的面积,就可以利用撒豆子,计算出落在不规则图形内部和正方形内部的豆子数比近似等于不规则图形面积与正方形面积比,从而近似求出不规则图形的面积.
统计学上还有一个非常著名的蒲丰投针实验:平面上间隔的平行线,向平行线间的平面上任意投掷一枚长为的针,通过多次实验可以近似求出针与任一平行线(以为例)相交(当针的中点在平行线外不算相交)的概率.以表示针的中点与最近一条平行线的距离,又以表示所成夹角,如图甲,易知满足条件:

由这两式可以确定平面上的一个矩形,如图乙,在图甲中,当满足___________(之间的关系)时,针与平行线相交(记为事件).可用从实验中获得的频率去近似,即投针次,其中相交的次数为,则,历史上有一个数学家亲自做了这实验,他投掷的次数是5000,相交的次数为2550次,,依据这个实验求圆周率的近似值_________.(精确到3位小数)
当前题号:7 | 题型:填空题 | 难度:0.99
某同学为了计算函数图象与x轴,直线所围成形状A的面积,采用“随机模拟方法”,用计算机分别产生10个在上的均匀随机数和10个在上的均匀随机数,其数据记录为如下表的前两行.

2.50
1.01
1.90
1.22
2.52
2.17
1.89
1.96
1.36
2.22

0.84
0.25
0.98
0.15
0.01
0.60
0.59
0.88
0.84
0.10

0.92
0.01
0.64
0.20
0.92
0.77
0.64
0.67
0.31
0.80
 
(1)依据表格中的数据回答,在图形A内的点有多少个,分别是什么?
(2)估算图形A的面积.
当前题号:8 | 题型:解答题 | 难度:0.99