- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型的特征
- + 几何概型计算公式
- 几何概型-长度型
- 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,半径为1的圆
是正方形
的内切圆,将一颗豆子随机地扔到正方形
内,用
表示事件“豆子落在圆
内”,
表示事件“豆子落在扇形
(阴影部分)内”,则
( )










A.![]() | B.![]() | C.![]() | D.![]() |
七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
勾股定理又称商高定理,三国时期吴国数学家赵爽创制了一幅“勾股圆方图”,正方形
是由4个全等的直角三角形再加上中间的阴影小正方形组成的,如图,记
,若
,在正方形
内随机取一点,则该点取自阴影正方形的概率为________.





某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
1777年法国著名数学家蒲丰曾提出过著名的投针问题,此后人们根据蒲丰投针原理,运用随机模拟方法可以估算圆周率π的近似值. 请你运用所学知识,解决蒲丰投针问题:平面上画着一些平行线,它们之间的距离都等于
(
),向此平面任投一根长度为
的针,已知此针与其中一条线相交的概率是
,则圆周率
的近似值为( )





A.![]() | B.![]() | C.![]() | D.![]() |
如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为( )


A.4 | B.5 | C.6 | D.7 |