- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,分别以
为圆心,正方形
的边长为半径圆弧,交成图中阴影部分,现向正方形内投入
个质点,则该点落在阴影部分的概率为( )





A.![]() | B.![]() | C.![]() | D.![]() |
“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为( )(参考数据:
)



A.3.1419 | B.3.1417 | C.3.1415 | D.3.1413 |
关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请100名同学每人随机写下一个
,
都小于1的正实数对
;再统计两数能与1构成钝角三角形三边的数对
的个数
;最后再根据统计数
估计
的值,假如某次统计结果是
,那么本次实验可以估计
的值为( ).











A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,圆O的半径为 2,现随机向圆O内投掷a粒豆子(豆子大小忽略不计),其中有b粒落在圆O的内接正十二边形内,则圆周率的近似值是( )


A.![]() | B.![]() | C.![]() | D.![]() |
2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |