- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,直角三角形的两直角边长分别为6和8,三角形内的阴影部分是三个半径为3的扇形,向该三角形内随机掷一点,则该点落在阴影部分的概率为


A.![]() | B.![]() |
C.![]() | D.![]() |
如图所示,半径为1的圆
是正方形
的内切圆,将一颗豆子随机地扔到正方形
内,用
表示事件“豆子落在圆
内”,
表示事件“豆子落在扇形
(阴影部分)内”,则
( )










A.![]() | B.![]() | C.![]() | D.![]() |
七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
勾股定理又称商高定理,三国时期吴国数学家赵爽创制了一幅“勾股圆方图”,正方形
是由4个全等的直角三角形再加上中间的阴影小正方形组成的,如图,记
,若
,在正方形
内随机取一点,则该点取自阴影正方形的概率为________.





关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请
名同学,每人随机写下一个都小于1的正实数对
;再统计两数能与1构成钝角三角形三边的数对
的个数
;最后再根据统计数
来估计
的值.假如统计结果是
,那么可以估计
( )










A.![]() | B.![]() | C.![]() | D.![]() |
某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |