- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.
从数字1,2,3,4,5中任取2个数,组成没有重复数字的两位数,试求
(1)这个两位数是5的倍数的概率;
(2)这个两位数是偶数的概率;
(3)若题目改为“从1,2,3,4,5中任取3个数,组成没有重复数字的三位数”,则这个三位数大于234的概率.
(1)这个两位数是5的倍数的概率;
(2)这个两位数是偶数的概率;
(3)若题目改为“从1,2,3,4,5中任取3个数,组成没有重复数字的三位数”,则这个三位数大于234的概率.
设
,在线段
上任取两点C,D(端点
除外),将线段
分成三条线段AC,CD,D
1组
2组
3组
4组
5组
6组
7组
8组
9组
10组
X
0.52
0.36
0.58
0.73
0.41
0.6
0.05
0.32
0.38
0.73
Y
0.76
0.39
0.37
0.01
0.04
0.28
0.03
0.15
0.14
0.86
11组
12组
13组
14组
15组
16组
17组
18组
19组
20组
X
0.67
0.47
0.58
0.21
0.54
0.64
0.36
0.35
0.95
0.14
Y
0.41
0.54
0.51
0.37
0.31
0.23
0.56
0.89
0.17
0.03
(X是
之间的均匀随机数,Y也是
之间的均匀随机数)




1组
2组
3组
4组
5组
6组
7组
8组
9组
10组
X
0.52
0.36
0.58
0.73
0.41
0.6
0.05
0.32
0.38
0.73
Y
0.76
0.39
0.37
0.01
0.04
0.28
0.03
0.15
0.14
0.86
11组
12组
13组
14组
15组
16组
17组
18组
19组
20组
X
0.67
0.47
0.58
0.21
0.54
0.64
0.36
0.35
0.95
0.14
Y
0.41
0.54
0.51
0.37
0.31
0.23
0.56
0.89
0.17
0.03
(X是


A. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称事件A)的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称事件B)的概率; (3)根据以下用计算机所产生的20组随机数,试用随机数摸拟的方法,来近似计算(Ⅱ)中事件B的概率. 20组随机数如下: |
在两个袋内,分别装着写有0,1,2,3,4,5六个数字的
张卡片,今从每个袋中任取一张卡片,则两数之和等于
的概率为__________.


将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率.
将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷2次,则出现向上的点数之和为5的概率是
A.![]() | B.![]() | C.![]() | D.![]() |
设
和
分别是从1,2,3,4这四个数中随机选取的数,用随机变量X表示方程
的实根的个数(重根按一个计).
(1)求方程
有实根的概率;
(2)求随机变量X的分布列和数学期望;
(3)若
中至少有一个为3,求方程
有实根的概率.



(1)求方程

(2)求随机变量X的分布列和数学期望;
(3)若


从一副
张(去掉大小王)的扑克牌中任取一张,求:
(1)这张牌是红桃的概率是多少?
(2)这张牌有人头像(
)的概率是多少?
(3)这张牌是红桃的条件下,有人头像的概率是多少

(1)这张牌是红桃的概率是多少?
(2)这张牌有人头像(

(3)这张牌是红桃的条件下,有人头像的概率是多少