- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.

(1)求质点P恰好返回到A点的概率;
(2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.

(1)求质点P恰好返回到A点的概率;
(2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.
某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记
为选出的4名选手中女选手的人数,求
的分布列和期望.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记


出下列命题,其中正确命题的个数有( )
①有一大批产品,已知次品率为
,从中任取100件,必有10件次品;
②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是
;
③某事件发生的概率是随着试验次数的变化而变化的;
④若
,则
是对立事件。
①有一大批产品,已知次品率为

②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是

③某事件发生的概率是随着试验次数的变化而变化的;
④若


A.0 | B.1 | C.2 | D.3 |
(本题满分13分) 已知关于x的二次函数
(1)设集合
和
,从集合
中随机取一个数作为
,从
中随机取一个数作为
,求函数
在区间
上是增函数的概率;
(2)设点
是区域
内的随机点,求函数
在区间
上是增函数的概率.

(1)设集合








(2)设点



