- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列概率模型:
①在平面直角坐标系中,从横坐标和纵坐标都是整数的所有中任取一点;
②某射手射击一次,可能命中0环,1环,2环,…,10环;
③某小组有男生5人,女生3人,从中任选1人做演讲;
④一只使用中的灯光的寿命长短;
⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
其中属于古典概型的是________.
①在平面直角坐标系中,从横坐标和纵坐标都是整数的所有中任取一点;
②某射手射击一次,可能命中0环,1环,2环,…,10环;
③某小组有男生5人,女生3人,从中任选1人做演讲;
④一只使用中的灯光的寿命长短;
⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
其中属于古典概型的是________.
已知某厂生产的6个网球中有2个是劣等品,且劣等品只要被检测就一定会被发现,现从这6个网球中任取3个进行检测,则检测出劣等品的概率是_____.
一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回地依次取出2个球,回答下列问题:
(1)第一次取出的是黑球的概率;
(2)第一次取出的是黑球,且第二次取出的是白球的概率.
(1)第一次取出的是黑球的概率;
(2)第一次取出的是黑球,且第二次取出的是白球的概率.
为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.

(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(Ⅱ)从图中A,B,C,D四人中随机选出两人,记
为选出的两人中指标x的值大于1.7的人数,求
的分布列.

(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(Ⅱ)从图中A,B,C,D四人中随机选出两人,记


雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格指标考核.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A,B,C三个城市进行治霾落实情况抽查.
(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;
(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为
,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X,求X的分布列和期望.
(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;
(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为

袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出1个球.
(1)把每个球的编号看作一个样本点建立的概率模型是不是古典概型?
(2)把球的颜色作为划分样本点的依据,有多少个样本点?以这些样本点建立的概率模型是不是古典概型?
(1)把每个球的编号看作一个样本点建立的概率模型是不是古典概型?
(2)把球的颜色作为划分样本点的依据,有多少个样本点?以这些样本点建立的概率模型是不是古典概型?
袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?