- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某运动员毎次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

据此估计,该运动员三次投篮恰有两次命中的概率为_________.

据此估计,该运动员三次投篮恰有两次命中的概率为_________.
袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是



A.至少有一个白球;都是白球 | B.至少有一个白球;至少有一个红球 |
C.至少有一个白球;红、黑球各一个 | D.恰有一个白球;一个白球一个黑球 |
如图所示,一游泳者自游泳池边
上的
点,沿
方向游了10米,
,然后任意选择一个方向并沿此方向继续游,则他再游不超过10米就能够回到游泳池
边的概率是______.






从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则互为对立事件的是( )
A.“至少一个红球”与“至少一个黄球” | B.“至多一个红球”与“都是红球” |
C.“都是红球”与“都是黄球” | D.“至少一个红球”与“至多一个黄球” |