- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
口袋中有个
白球,
个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球,记取球的次数为
,若
,则
的值为______ .





某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
某学校有1200名学生,随机抽出300名进行调查研究,调查者设计了一个随机化装置,这是一个装有大小、形状和质量完全相同的10个红球,10个绿球和10个白球的袋子.调查中有两个问题:
问题1:你的阳历生日月份是不是奇数?
问题2:你是否抽烟?
每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?
问题1:你的阳历生日月份是不是奇数?
问题2:你是否抽烟?
每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?
小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
十五巧板,又称益智图,是一种类似七巧板的智力游戏,由十五块板组成(如图①),它由浙江省德清知县童叶庚在清朝同治年间所发明,能拼出草木、花果、鸟兽、鱼虫、文字等图案.图②是用十五巧板拼出的十二生肖中的小狗图案,则从小狗图案中任取一点,该点恰好取自阴影部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,就是用圆内接正多边形的面积去无限逼近圆的面积并以此求取圆周率的方法.如图所示,正十二边形的中心为圆心
,圆
的半径为2.现随机向圆
内投放
粒豆子,其中有
粒豆子落在正十二边形内(
,
),则圆周率的近似值是( )









A.![]() | B.![]() | C.![]() | D.![]() |
某城市有连接8个小区
、
、
、
、
、
、
、
和市中心
的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区
前往小区
,则他不经过市中心
的概率是( )














A.![]() | B.![]() | C.![]() | D.![]() |
某大型工程遇到一个技术难题,工程总部将这个问题分别让甲研究所和乙研究所进行独立研究,已知甲研究所独立研究并解决这个问题的概率为0.6,乙研究所独立研究并解决这个问题的概率为0.7,这个技术难题最终能被解决的概率为______.