- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
箱子中有形状、大小都相同的3只红球,2只白球,从中一次摸出2只球.
(1)求摸到的2只球颜色不同的概率:
(2)求摸到的2只球中至少有1只红球的概率.
(1)求摸到的2只球颜色不同的概率:
(2)求摸到的2只球中至少有1只红球的概率.
下列说法中正确的是( )
A.若事件![]() ![]() ![]() |
B.若事件![]() ![]() ![]() ![]() |
C.一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件 |
D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件 |
盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.
(1)求取到的2个球中恰好有1个是黑球的概率;
(2)求取到的2个球中至少有1个是红球的概率.
(1)求取到的2个球中恰好有1个是黑球的概率;
(2)求取到的2个球中至少有1个是红球的概率.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求
的概率
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求

从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )
A.至少有一个红球与都是红球 |
B.至少有一个红球与都是白球 |
C.恰有一个红球与恰有二个红球 |
D.至少有一个红球与至少有一个白球 |