- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋子中有四个小球,分别写有“美、丽、华、一”四个字,有放回地从中任取一个小球,直到“华”“一”两个字都取到就停止,用随机模拟的方法估计恰好在第四次停止的概率.利用计算机随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“美、丽、华、一”这四个字,以每四个随机数为一组,表示取球四次的结果,经随机模拟产生了以下20组随机数:
2323 3211 2303 1233 0211 1322 2201 2213 0012 1231
2312 1300 2331 0312 1223 1031 3020 3223 3301 3212
由此可以估计,恰好第四次就停止的概率为( )
2323 3211 2303 1233 0211 1322 2201 2213 0012 1231
2312 1300 2331 0312 1223 1031 3020 3223 3301 3212
由此可以估计,恰好第四次就停止的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于
,则n的值共有( )

A.1个 | B.2个 | C.3个 | D.4个 |
一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列.
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列.
下面结论正确的是( )
A.若![]() |
B.若![]() |
C.若事件A与B是互斥事件,则A与![]() |
D.若事件A与B是相互独立事件,则A与![]() |
国家教育部规定高中学校每周至少开设两节体育选修课,在一次篮球选修课上,体育老师让同学们练习投篮,其中小化连续投篮两次,事件
“两次投篮至少有一次投篮命中”与事件
“两次投篮都命中”是( )


A.对立事件 | B.互斥但不对立事件 |
C.不可能事件 | D.既不互斥也不对立事件 |
在新高考改革中,一名高一学生在确定选修物理的情况下,想从政治,地理,生物,化学中再选两科学习,则所选两科中一定有地理的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |