- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格指标考核.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A,B,C三个城市进行治霾落实情况抽查.
(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;
(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为
,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X,求X的分布列和期望.
(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;
(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为
,乙、丙面试合格的概率都是
,且面试是否合格互不影响.
(Ⅰ)求至少有1人面试合格的概率;
(Ⅱ)求签约人数
的分布列和数学期望.


(Ⅰ)求至少有1人面试合格的概率;
(Ⅱ)求签约人数

小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有2次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第2次考试,第2次考试通过后进入操作考试环节,第2次未通过则直接被淘汰.在操作考试环节,若第1次考试通过,则直接获得证书;若第1次未通过,则进行第2次考试,第2次考试通过后获得证书,第2次未通过则被淘汰.若小明每次理论考试通过的概率为
,每次操作考试通过的概率为
,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是


A.![]() | B.![]() | C.![]() | D.![]() |
近几年电子商务蓬勃发展,在2017年的“年货节”期间,一网络购物平台推销了
三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了
三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对
三种商品的抢购成功的概率分别为
,已知三件商品都被抢购成功的概率为
,至少有一件商品被抢购成功的概率为
.
(1)求
的值;
(2)若购物平台准备对抢购成功的
三件商品进行优惠减免活动,
商品抢购成功减免
百元,
商品抢购成功减免
百元,
商品抢购成功减免
百元,求该名网购者获得减免的总金额(单位:百元)的分布列和数学期望.






(1)求

(2)若购物平台准备对抢购成功的







甲、乙二人各有6张扑克牌,每人都是3张红心,2张草花,1张方片.每次两人从自己的6张牌中任意抽取一张进行比较,规定:两人花色相同时甲胜,花色不同时乙胜.
(1)此规定是否公平?为什么?
(2)若又规定:当甲取红心、草花、方片而获胜所得的分数分别为3,2,1,否则得0分,求甲得分的均值.
(1)此规定是否公平?为什么?
(2)若又规定:当甲取红心、草花、方片而获胜所得的分数分别为3,2,1,否则得0分,求甲得分的均值.
已知菱形ABCD中,CD= 4,ÐBCD = 120°,分别以A、B、C、D为圆心,2为半径作圆,得到的图形如下图所示,若往菱形内投掷10000个点,则落在阴影部分内的点约有________________个.(
取
)




“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3 072边形,并由此而求得了圆周率为3.141 5和3.141 6这两个近似数值.这个结果是当时世界上圆周率计算的最精确的数据,如果按π=3.142计算,那么当分割到圆内接正六边形时,如图所示,向圆内随机投掷一点,那么该点不落在正六边形内的概率为(
,精确到小数点后两位)( )



A.0.16 | B.0.17 | C.0.18 | D.0.19 |
(安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考)如图所示,在平面直角坐标系内,四边形
为正方形且点
坐标为
.抛物线
的顶点在原点,关于
轴对称,且过点
.在正方形
内随机取一点
,则点
在阴影区域内的概率为_________.









