- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- + 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
3位男生和3位女生共6位同学站成一排,若女生不站排尾,女生甲与女生乙都不与女生丙相邻,则不同排法的种数是()
A.72 | B.96 | C.108 | D.144 |
某电视台连续播放6个广告,三个不同的商业广告,两个不同的奥运宣传广告,一个公益广告,要求最后播放的不能是商业广告,且奥运宣传广告与公益广告不能连续播放,两个奥运宣传广告也不能连续播放,则不同的播放方式有()
A.48种 | B.98种 | C.108种 | D.120种 |
有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是_____
4个男生,3个女生站成一排.
(Ⅰ)3个女生两两相邻,有多少种不同的站法.
(Ⅱ)3个女生两两不相邻,有多少种不同的站法.
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法.
(Ⅰ)3个女生两两相邻,有多少种不同的站法.
(Ⅱ)3个女生两两不相邻,有多少种不同的站法.
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法.
7人排成一排,按以下要求分别有多少种排法?
(1)甲、乙两人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有两人排在一起.(答题要求:先列式,后计算)
(1)甲、乙两人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有两人排在一起.(答题要求:先列式,后计算)
现有4名男生、3名女生站成一排照相.
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
现有4名男生、3名女生站成一排照相.(结果用数字表示)
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?