下面是22列联表,则表中a,b处的值为(  )
 


总计

a
21
73

7
20
27
总计
b
41
100
 
A.94,96B.52,40C.52,59D.59,52
当前题号:1 | 题型:单选题 | 难度:0.99
为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如表的列联表:
 
喜欢打篮球
不喜欢打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
 
已知在全部50人中喜欢打篮球的学生为30人.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜欢打篮球与性别有关?请说明你的理由.
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中.
当前题号:2 | 题型:解答题 | 难度:0.99
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表: 
 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式 其中
当前题号:3 | 题型:解答题 | 难度:0.99
为推进“千村百镇计划”,月某新能源公司开展“电动莆田 绿色出行”活动,首批投放型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为分).最后该公司共收回份评分表,现从中随机抽取份(其中男、女的评分表各份)作为样本,经统计得到如下茎叶图:

(1)求个样本数据的中位数
(2)已知个样本数据的平均数,记的最大值为.该公司规定样本中试用者的“认定类型”:评分不小于的为“满意型”,评分小于的为“需改进型”.
①请根据个样本数据,完成下面列联表:

根据列联表判断能否有的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为,求的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某校教务处对学生学习的情况进行调研,其中一项是:对“学习数学”的态度是否与性别有关,可见随机抽取了30名学生进行了问卷调查,得到了如下联表:
 
男生
女生
合计
喜欢
10
 
 
不喜欢
 
8
 
合计
 
 
30
 
已知在这30人中随机抽取1人,抽到喜欢“学习数学”的学生的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);
(2)若从喜欢“学习数学”的女生中抽取2人进行调研,其中女生甲被抽到的概率为多少?(要写求解过程)
(3)试判断是否有95%的把握认为喜欢“学习数学”与性别有关?
附:,其中.

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:5 | 题型:解答题 | 难度:0.99
为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
 
喜好体育运动
不喜好体育运动
男生
 
5
女生
10
 
 
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;
(3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.
参考公式:
独立性检验临界值表:

0.10
0.05
0.025
0.010

2.706
3.841
5.024
6.635
 
当前题号:6 | 题型:解答题 | 难度:0.99
某省数学学会为选拔一批学生代表该省参加全国高中数学联赛,在省内组织了一次预选赛,该省各校学生均可报名参加.现从所有参赛学生中随机抽取人的成绩进行统计,发现这名学生中本次预选赛成绩优秀的男、女生人数之比为,成绩一般的男、女生人数之比为.已知从这名学生中随机抽取一名学生,抽到男生的概率是
(1)请将下表补充完整,并判断是否有的把握认为在本次预选赛中学生的成绩优秀与性别有关?
 
成绩优秀
成绩一般
总计
男生
 
 
 
女生
 
 
 
总计
 
 

 
(2)以样本估计总体,视样本频率为相应事件发生的概率,从所有本次预选赛成绩优秀的学生中随机抽取人代表该省参加全国联赛,记抽到的女生人数为,求随机变量的分布列及数学期望.
参考公式:,其中
临界值表供参考:


 
 
 
 

 
 
 
 
 
 
当前题号:7 | 题型:解答题 | 难度:0.99
某市交通管理部门为了解市民对机动车“单双号限行”的态度,随机采访了100名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到了如下的列联表:
 
赞同限行
不赞同限行
合计
没有私家车
 
15
 
有私家车
45
 
 
合计
 
 
100
 
已知在被采访的100人中随机抽取1人且抽到“赞同限行”者的概率是.
(1)请将上面的列联表补充完整;
(2)根据上面的列联表判断能否在犯错误的概率不超过0.10的前提下认为“对限行的态度与是否拥有私家车有关”;
(3)将上述调查所得到的频率视为概率.现在从该市大量市民中,采用随机抽样方法每次抽取1名市民,抽取3次,记被抽取的3名市民中的“赞同限行”人数为.若每次抽取的结果是相互独立的,求的分布列、期望和方差.
附:参考公式:,其中.
临界值表:

0.15
0.10
0.05
0.025
0.10
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

 
经济损失4000元以下
经济损失4000元以上
合计
捐款超过500元
30
 
 
捐款低于500元
 
6
 
合计
 
 
 
 
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求李师傅比张师傅早到小区的概率.
附:临界值表

2.072
2.706
3.841
5.024
6.635
7.879
10.828

0.15
0.10
0.05
0.025
0.010
0.005
0.001
 
参考公式:.
当前题号:9 | 题型:解答题 | 难度:0.99
某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在试验地随机抽选各株,对每株进行综合评分(评分的高低反映花苗品质的高低),将每株所得的综合评分制成如图所示的频率分布直方图:

(1)求图中的值,并求综合评分的中位数;
(2)记综合评分为及以上的花苗为优质花苗.填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
 
优质花苗
非优质花苗
合计
甲培育法

 
 
乙培育法
 

 
合计
 
 
 
 
附:下面的临界值表仅供参考.
















 
(参考公式:,其中.)
当前题号:10 | 题型:解答题 | 难度:0.99