- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“中国式过马路” 存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的
列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)求
列联表中的
的值;
(2)根据列联表中的数据,判断是否有
把握认为反感“中国式过马路”与性别有关?
参考公式:
,

临界值表:


(1)求


(2)根据列联表中的数据,判断是否有

参考公式:



临界值表:

襄阳市拟在2021年奥体中心落成后申办2026年湖北省省运会,据了解,目前武汉,宜昌,黄石等申办城市因市民担心赛事费用超支而准备相继退出,某机构为调查襄阳市市民对申办省运会的态度,选取某小区的100位居民调查结果统计如下:
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过
的前提下认为不同年龄与是否支持申办省运会无关?
附:
,
.
| 支持 | 不支持 | 合计 |
年龄不大于50岁 | | | 60 |
年龄大于50岁 | 10 | | |
合计 | | 80 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过

附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):

(1)成绩不低于80分记为“优秀”.请完成下面的
列联表,并判断是否有
的把握认为“成绩优秀”与所在教学班级有关?

(2)从两个班级的成绩在
的所有学生中任选2人,记事件
为“选出的2人中恰有1人来自甲班”,求事件
发生的概率
.
参考公式:
,其中
.
参考数据:

(1)成绩不低于80分记为“优秀”.请完成下面的



(2)从两个班级的成绩在




参考公式:


参考数据:
![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
2018年2月22日,在平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时),又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.
,请画出频率分布直方图;
(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30个小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20个小时的男生有50人,请完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生观看冬奥会的累计时间与性别有关”?
参考数据:
参考公式:
.

(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30个小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20个小时的男生有50人,请完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生观看冬奥会的累计时间与性别有关”?
| 男生 | 女生 | 总计 |
累计观看时间小于20小时 | | | |
累计观看时间不小于20小时 | | | |
总计 | | | |
参考数据:
![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
参考公式:

(山东省名校联盟2018年第一次适应性模拟试题)某市一中毕业生有3000名,二中毕业生有2000名.为了研究语文高考成绩是否与学校有关,现采用分层抽样的方法,从中抽取100名学生,先统计了他们的成绩(折合成百分制),然后按“一中”、“二中”分为两组,再将成绩分为5组,
,
,
,
,
,分别加以统计,得到如图所示的频率分布直方图:

(1)从成绩在90分(含90分)以上的学生中随机抽取2人,问至少抽到一名学生是“一中”的概率;
(2)规定成绩在70分以下为“成绩不理想”,请根据已知条件构造
列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“成绩理想不理想与所在学校有关”?
附:






(1)从成绩在90分(含90分)以上的学生中随机抽取2人,问至少抽到一名学生是“一中”的概率;
(2)规定成绩在70分以下为“成绩不理想”,请根据已知条件构造

附:

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某医院对治疗支气管肺炎的两种方案A,B进行比较研究,将志愿者分为两组,分别采用方案A和方案B进行治疗,统计结果如下:
(1)完成上述列联表,并比较两种治疗方案有效的频率;
(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:
.
| 有效 | 无效 | 合计 |
使用方案A组 | 96 | | 120 |
使用方案B组 | 72 | | |
合计 | | 32 | |
(1)完成上述列联表,并比较两种治疗方案有效的频率;
(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:

P(![]() | 0.005 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.
(1)根据以上数据完成2×2列联表;
(2)判断性别与喜欢运动是否有关,并说明理由;
(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.
附:K2=
,
(1)根据以上数据完成2×2列联表;
| 喜欢运动 | 不喜欢运动 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
(2)判断性别与喜欢运动是否有关,并说明理由;
(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.
附:K2=

P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( )
患心脏病情况 秃发情况 | 患心脏病 | 无心脏病 |
秃发 | 20 | 300 |
不秃发 | 5 | 450 |
A.0.1 | B.0.05 |
C.0.01 | D.0.99 |
在调查男女学生购买食品时是否阅读营养成分说明时,调查了36位男生、38位女生,而且阅读营养成分的人有46人,阅读营养成分的人中有28位女生,用2×2列联表表示上述数据.
为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下表,现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为
.

(1)求2×2列联表中的数据x,y,A,B的值.
(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?
(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效?
附:
,其中n=a+b+c+d.临界值表:

| 未发病 | 发病 | 总计 |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
总计 | 50 | 50 | 100 |

(1)求2×2列联表中的数据x,y,A,B的值.
(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?
(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效?
附:

P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |