某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0
-0.1
 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:1 | 题型:解答题 | 难度:0.99
某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

 
网购达人
非网购达人
合计
男性
 
 
30
女性
12
 
30
合计
 
 
60
 
若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式:,其中
P()
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
有甲、乙两个班进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:(单位:人).

已知在全部105人中随机抽取1人成绩是优秀的概率为.
(1)请完成上面的列联表,并根据表中数据判断,是否有的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为,求的分布列与期望.
附:

0.15
0.10
0.050
0.010

2.072
2.706
3.841
6.635
 
当前题号:3 | 题型:解答题 | 难度:0.99
为考察某种药物预防疾病的效果,进行动物试验,所得数据如下列联表:
 
患病
未患病
总计
没服用药



服用药



总计



 
从服药的动物中任取只,记患病动物只数为
(I)求出列联表中数据的值,并求的分布列和期望;
(II)能够有的把握认为药物有效吗?(参考数据如下)
(参考公式:














 
当前题号:4 | 题型:解答题 | 难度:0.99
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

 根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲: 
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和,并通过比较,的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:5 | 题型:解答题 | 难度:0.99
为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
 
平均车速超过
人数
平均车速不超过
人数
合计
男性驾驶员人数
 
 
 
女性驾驶员人数
 
 
 
合计
 
 
 
 
(Ⅱ )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式:,其中
参考数据:

0.150
0.100
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
随机调查某社区80个人,以研究这一社区居民在17:00—21:00时间段的休闲方式是否与性别有关,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求的分布列和期望;
(2)根据以上数据,能否有99%的把握认为在17:00—21:00时间段的休闲方式与性别有关系?
当前题号:7 | 题型:解答题 | 难度:0.99
随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查人,并将调查情况进行整理后制成下表:
年龄(岁)





频数





赞成人数





 
(1)世界联合国卫生组织规定:岁为青年,为中年,根据以上统计数据填写以下列联表:
 
青年人
中年人
合计
不赞成
 
 
 
赞成
 
 
 
合计
 
 
 
 
(2)判断能否在犯错误的概率不超过的前提下,认为赞成“车柄限行”与年龄有关?
附:,其中
独立检验临界值表:










 
(3)若从年龄的被调查中各随机选取人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄






频数
5
10
15
10
5
5
支持“生育二胎”
4
5
12
8
2
1
 
(1)由以上统计数据填下面列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
 
年龄不低于45岁的人数
年龄低于45岁的人数
合计
支持


 
不支持


 
合计
 
 
 
 
(2)若对年龄在的被调查人中各随机选取两人进行调查,记选中的4人中不支持“生育二胎”人数为,求随机变量的分布列及数学期望.
参考数据:

0.05
0.010
0.001

3.841
6.635
10.828
 
,其中
当前题号:9 | 题型:解答题 | 难度:0.99
某农科所发现,一种作物的年收获量 (单位:)与它“相近”作物的株数 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过  ),并分别记录了相近作物的株数为 时,该作物的年收获量的相关数据如下:














 

(1)求该作物的年收获量 关于它“相近”作物的株数的线性回归方程;
(2)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每
个小正方形的面积为 ,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收
获量以线性回归方程计算所得数据为依据)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估
计分别为, ,
当前题号:10 | 题型:解答题 | 难度:0.99