下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③若两个变量间的线性相关关系越强,则相关系数的值越接近于1;
④对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大.
其中正确的命题序号是(   )
A.①②③B.①②C.①③④D.②③④
当前题号:1 | 题型:单选题 | 难度:0.99
指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重;当数值小于20.5时,我们说体重较轻;身高大于或等于170的我们说身高较高;身高小于170的我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图所示,请根据所得信息,完成下列列联表,并判断是否有95%的把握认为男体育特长生的身高对指数有影响;

 
身高较矮
身高较高
合计
体重较轻
 
 
 
体重较重
 
 
 
合计
 
 
 
 
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:
编号
1
2
3
4
5
6
7
8
身高
166
167
160
173
178
169
158
173
体重
57
58
53
61
66
57
50
66
 
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献率 (保留两位有效数字);
编号
1
2
3
4
5
6
7
8
体重
57
58
53
61
66
57
50
66
残差
0.1
0.3
0.9
-1.5
-0.5
 
 
 
 
②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)


).

0.10
0.05
0.01
0.005

2.706
3.841
6.635
7.879
 
(参考数据)

.
当前题号:2 | 题型:解答题 | 难度:0.99
2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量,则;
对于一组数据,其回归线的斜率和截距的最小二乘估计分别为
当前题号:3 | 题型:解答题 | 难度:0.99
对相关系数r来说,下列说法正确的是(  ).
A.越接近0,相关程度越大;越接近1,相关程度越小
B.越接近1,相关程度越大;越大,相关程度越小
C.越接近1,相关程度越大;越接近0,相关程度越小
D.越接近1,相关程度越小;越大,相关程度越大
当前题号:4 | 题型:单选题 | 难度:0.99
某大型歌手选秀活动,过程分为初赛、复赛和决赛.经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.下图是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图.赛制规定:参加复赛的40名选手中,获得的支持票数不低于85票的可进入决赛,其中票数不低于95票的选手在决赛时拥有“优先挑战权”.

(1)从进入决赛的选手中随机抽出2名,X表示其中拥有“优先挑战权”的人数,求X的分布列和数学期望;
(2)请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为进入决赛与选择的导师有关?
 
甲班
乙班
合计
进入决赛
 
 
 
未进入决赛
 
 
 
合计
 
 
 
 
下面的临界值表仅供参考:
P
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:5 | 题型:解答题 | 难度:0.99
下列关于回归分析的说法中错误的是(   )
A.残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适
B.两个模型中残差平方和越小的模型拟合的效果越好
C.在线性回归方程中,当解释变量x每增加一个单位时,预报变量就平均增加0.2个单位
D.甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好
当前题号:6 | 题型:单选题 | 难度:0.99
为了研究每周累计户外暴露时间是否足够(单位:小时)与近视发病率的关系,对某中学一年级名学生进行不记名问卷调查,得到如下数据:

(1)用样本估计总体思想估计该中学一年级学生的近视率;
(2)能否认为在犯错误的概率不超过的前提下认为不足够的户外暴露时间与近视有关系?
附:
当前题号:7 | 题型:解答题 | 难度:0.99
《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了两个城市各100名观众,得到下面的列联表.
 
非常喜爱
喜爱
合计
城市
60
 
100
城市
 
30
 
合计
 
 
200
 
完成上表,并根据以上数据,判断是否有的把握认为观众的喜爱程度与所处的城市有关?
附参考公式和数据:(其中).

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:8 | 题型:解答题 | 难度:0.99
在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调査了某地区的个捐款居民每月平均的经济收入.在捐款超过元的居民中,每月平均的经济收入没有达到元的有个,达到元的有个;在捐款不超过元的居民中,每月平均的经济收入没有达到元的有个.
(1)在下图表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否超过元和居民毎月平均的经济收入是否达到元有关?
(2)将上述调查所得到的频率视为概率. 现在从该地区大量居民中,采用随机抽样方法毎次抽取个居民,共抽取次,记被抽取的个居民中经济收入达到元的人数为,求和期望的值.
 
每月平均经济收入达到
每月平均经济收入没有达到
合计
捐款超过
 
 
 
捐款不超过
 
 
 
合计
 
 
 
 
附:,其中
当前题号:9 | 题型:解答题 | 难度:0.99
共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2016年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.

(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
 
年轻人
非年轻人
合计
经常使用单车用户
 
 
120
不常使用单车用户
 
 
80
合计
160
40
200
 
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布与期望.
(参考数据:
独立性检验界值表

0.15
0.10
0.050
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
其中,
当前题号:10 | 题型:解答题 | 难度:0.99