- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- + 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某工厂生产的某种零件中抽取1000个,检测这些零件的性能指标值,由检测结果得到如下频率分布直方图:

(1)求这1000个零件的性能指标值的样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(2)在性能指标值落在区间
,
,
的三组零件中,用分层抽样的方法抽取
个零件,则性能指标值在
的零件应抽取多少个?

(1)求这1000个零件的性能指标值的样本平均数


(2)在性能指标值落在区间





2019年春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速收费点处记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如图所示,其中时间段9:20~9:40记作区间
,9:40~10:00记作
,10:00~10:20记作
,10:20~10:40记作
.比方:10点04分,记作时刻64.

(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记
为9:20~10:00之间通过的车辆数,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻
服从正态分布
,其中
可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若
,则
,
,
.





(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记


(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻




参考数据:若




2019年4月26日,铁人中学举行了盛大的成人礼.仪式在《相信我们会创造奇迹》的歌声中拉开序幕,庄严而神圣的仪式感动了无数家长,4月27日,铁人中学官方微信发布了整个仪式精彩过程,几十年众志成城,数十载砥砺奋进,铁人中学正在创造着一个又一个奇迹.官方微信发布后,短短几个小时点击量就突破了万人,收到了非常多的精彩留言.学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:

(Ⅰ)求这100位留言者年龄的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,留言者年龄
服从正态分布
,其中
近似为样本均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ii)学校从年龄在
和
的留言者中,按照分层抽样的方法,抽出了7人参加“精彩留言”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间
的人数是
,求变量
的分布列和数学期望.附:
,若
,则
,
.


(Ⅰ)求这100位留言者年龄的样本平均数


(Ⅱ)由频率分布直方图可以认为,留言者年龄






(ⅰ)利用该正态分布,求

(ii)学校从年龄在









改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多
亿元以上的概率;
(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多
亿元以上的概率;
(Ⅱ)从2007年至2016年随机选择3年,设
是选出的三年中体育产业年增长率超过20%的年数,求
的分布列与数学期望;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多

(Ⅱ)从2007年至2016年随机选择3年,设


(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中
,
,
的值;
(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的
”的规定?

(1)求图中



(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的

2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间
(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数
和样本方差
(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该校学生每周的阅读时间
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若
令
,则
,且
.利用直方图得到的正态分布,求
.
(ii)从该高校的学生中随机抽取20名,记
表示这20名学生中每周阅读时间超过10小时的人数,求
(结果精确到0.0001)以及
的数学期望.
参考数据:
.若
,则
.


(1)求这200名学生每周阅读时间的样本平均数


(2)由直方图可以认为,目前该校学生每周的阅读时间






(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若





(ii)从该高校的学生中随机抽取20名,记



参考数据:



蚌埠市某中学高三年级从甲(文)、乙(理)两个科组各选出
名学生参加高校自主招生数学选拔考试,他们取得的成绩的茎叶图如图所示,其中甲组学生的平均分是
,乙组学生成绩的中位数是
.

(1)求
和
的值;
(2)计算甲组
位学生成绩的方差
;
(3)从成绩在
分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.




(1)求


(2)计算甲组


(3)从成绩在
