- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- + 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则
的值为__________ .


某教师为了了解本校高三学生一模考试的数学成绩情况,将所教两个班级的数学成绩(单位:分)绘制成如图所示的茎叶图.

(1)分别求出甲、乙两个班级数学成绩的中位数、众数;
(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率;
(3)在(2)的条件下,若用甲班学生数学成绩的频率估计概率,从该校高三年级中随机抽取3人,记这3人中数学成绩优秀的人数为
,求
的分布列和数学期望.

(1)分别求出甲、乙两个班级数学成绩的中位数、众数;
(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率;
(3)在(2)的条件下,若用甲班学生数学成绩的频率估计概率,从该校高三年级中随机抽取3人,记这3人中数学成绩优秀的人数为


从某中学甲班随机抽取9名男同学测量他们的体重(单位:kg),获得体重数据如茎叶图所示,对这些数据,以下说法正确的是


A.中位数为62 | B.中位数为65 | C.众数为62 | D.众数为64 |
某同学在高三参加的九次考试成绩分别为85,94,101,110,106,123,123,122,130,则这些次成绩的中位数是_______
从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为
中位数分别为
则( )




A.x甲<x乙,m甲>m乙 | B.x甲>x乙,m甲>m乙 |
C.x甲>x乙,m甲<m乙 | D.x甲<x乙,m甲<m乙 |
如下所示,茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中的成绩(单位:分)
已知甲组数据的平均数为17,乙组数据的中位数为17,则
,
的值分别为( )

已知甲组数据的平均数为17,乙组数据的中位数为17,则



A.3,6 | B.3,7 | C.2,6 | D.2,7 |
高新区某高中德育处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)的茎叶图如下:

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人,记
表示测试成绩在80分以上的人数,求
的分布列和数学期望

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人,记


某权威机构发布了2014年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“极幸福”的人数,求
的分布列及数学期望.

(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记


某校高一年级10名同学参加校园歌手大赛的得分用茎叶图表示,其中茎为十位数,叶为个位数,则这组数据的中位数为( )


A.91.5 | B.88 | C.88.5 | D.90 |