- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- + 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知甲、乙两组数据如茎叶图所示,则甲组的中位数与乙组的平均数分别为( )
甲 | | 乙 |
7 9 2 | 2 3 | 4 2 4 8 |
A.32, 32 |
B.27, 32 |
C.39, 34 |
D.32, 34 |
以下茎叶图记录了甲、乙两组各五名老师在一次学法(宪法部分)测试中的成绩(单位:分)

已知甲组数据的中位数是
,乙组数据的平均数是
,则
的值等于__________ .

已知甲组数据的中位数是



如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中
为数字0~9中的一个),则下列结论中正确的是( )



A.甲选手的平均分有可能和乙选手的平均分相等 |
B.甲选手的平均分有可能比乙选手的平均分高 |
C.甲选手所有得分的中位数比乙选手所有得分的中位数低 |
D.甲选手所有得分的众数比乙选手所有得分的众数高 |
某校高三统考结束后,分别从喜欢数学和不喜欢数学的学生中各随机抽取了10人的成绩,分数都是整数,得到如下茎叶图,但是喜欢数学和不喜欢数学的各缺失了一个数据.若已知不喜欢数学的10人成绩的中位数为75,且已知喜欢数学的10人中所缺失成绩是85分以上,但是不高于喜欢数学的10人的平均分.不喜欢数学和喜欢数学缺失的数据分别是____,____.

甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为( )


A.0 | B.1 |
C.2 | D.3 |
某大型商场在2018年国庆举办了一次抽奖活动抽奖箱里放有3个红球,3个黑球和1个白球
这些小球除颜色外大小形状完全相同
,从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱活动另附说明如下:
凡购物满
含
元者,凭购物打印凭条可获得一次抽奖机会;
凡购物满
含
元者,凭购物打印凭条可获得两次抽奖机会;
若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据
单位:元
,绘制得到如图所示的茎叶图.

求这20位顾客中获得抽奖机会的顾客的购物消费数据的中位数与平均数
结果精确到整数部分
;
记一次抽奖获得的红包奖金数
单位:元
为X,求X的分布列及数学期望,并计算这20位顾客在抽奖中获得红包的总奖金数的平均值
假定每位获得抽奖机会的顾客都会去抽奖
.











抽奖活动的组织者记录了该超市前20位顾客的购物消费数据










