- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )


A.73.3,75,72 | B.72,75,73.3 |
C.75,72,73.3 | D.75,73.3,72 |
如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )


A.12.5;12.5 | B.13;13 | C.13;12.5 | D.12.5;13 |
某地统计局就该地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).

(1)求居民月收入在[2000,2500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出90人作进一步分析,则月收入在[3000,3500)的这段应抽多少人?

(1)求居民月收入在[2000,2500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出90人作进一步分析,则月收入在[3000,3500)的这段应抽多少人?
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图
图1:乙流水线样本频率分布直方图

表1:甲流水线样本频数分布表
(1)根据图1,估计乙流水线生产产品该质量指标值的中位数和平均数(估算平均数时,同一组中的数据用该组区间的中点值为代表);
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出的不合格品约多少件?
图1:乙流水线样本频率分布直方图

表1:甲流水线样本频数分布表
质量指标值 | 频数 |
(190,195] | 9 |
(195,200] | 10 |
(200,205] | 17 |
(205,210] | 8 |
(210,215] | 6 |
(1)根据图1,估计乙流水线生产产品该质量指标值的中位数和平均数(估算平均数时,同一组中的数据用该组区间的中点值为代表);
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出的不合格品约多少件?
某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.

(1)求居民月收入在[3000,3500)内的频率;
(2)根据频率分布直方图求出样本数据的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?

(1)求居民月收入在[3000,3500)内的频率;
(2)根据频率分布直方图求出样本数据的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?
在某次测验中,某班40名考生的成绩满分100分统计如图所示.

(Ⅰ)估计这40名学生的测验成绩的中位数
精确到0.1;
(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?
附:


(Ⅰ)估计这40名学生的测验成绩的中位数

(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?
| 合格 | 优秀 | 合计 |
男生 | 16 | | |
女生 | | 4 | |
合计 | | | 40 |
附:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |

党的十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,团结带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:根据频率分布直方图,则这50位农民的年收入(单位:千元)的中位数为_________ .

某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注扫黑除恶的人群中随机选出
人,并将这
人按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(1)求出
的值;
(2)求这
人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).














(1)求出

(2)求这

已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是


A.63、64、66 | B.65、65、67 |
C.65、64、66 | D.64、65、64 |
为了比较注射
,
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物
和药物
后的实验结果.(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物
后皮肤疱疹面积的频数分布表
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面
列联表,并回答能否有99.9%的把握认为“注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异”.

附:







表1:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() |
频数 | 30 | 40 | 20 | 10 |
表2:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面




| 疱疹面积小于![]() | 疱疹面积不小于![]() | 合计 |
注射药物![]() | | | |
注射药物![]() | | | |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.025 | 0.01 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |