- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- + 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高二数学期中测试中,为了了解学生的考试情况,从中抽取了
个学生的成绩(满分为100分)进行统计.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60), [90,100]的数据).

(1)求样本容量
和频率分布直方图中
的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..


(1)求样本容量


(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..
如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为______.

为了比较两种治疗失眠症的药(分别称为
药,
药)的疗效,随机地选取18位患者服用
药,18位患者服用
药,这36位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:
),试验的观测结果如下:
服用
药的18位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3
服用
药的18位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7
(1)分别计算两组数据的平均数(小数点后保留两位小数),从计算结果看哪种药疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?并说明理由.





服用

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3
服用

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7
(1)分别计算两组数据的平均数(小数点后保留两位小数),从计算结果看哪种药疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?并说明理由.

本小题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:
).记甲组数据的众数与中位数分别为
,乙组数据的众数与中位数分别为
,则( )





A.![]() | B.![]() |
C.![]() | D.![]() |
如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,其中茎为十位数,叶为个位数,甲、乙两人得分的中位数为X甲、X乙,则下列判断正确的是()


A.X乙﹣X甲=5,甲比乙得分稳定 |
B.X乙﹣X甲=5,乙比甲得分稳定 |
C.X乙﹣X甲=10,甲比乙得分稳定 |
D.X乙﹣X甲=10,乙比甲得分稳定 |
下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )
A.0.2 | B.0.4 | C.0.5 | D.0.6 |
某机构用“10分制”调查了各阶层人士对某次国际马拉松赛事的满意度,现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数
以小数点前的一位数字为茎,小数点后的一位数字为叶
:

(1)指出这组数据的众数和中位数;
(2)若满意度不低于
分,则称该被调查者的满意度为“极满意”,求从这16人中随机选取3人,至少有2人满意度是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体
人数很多
任选3人,记
表示抽到“极满意”的人数,求
的分布列及数学期望.



(1)指出这组数据的众数和中位数;
(2)若满意度不低于

(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体




为调查某小区居民的“幸福度”.现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记
表示抽到“幸福”的人数,求
的分布列及数学期望和方差.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记

