- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- + 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年“双十一”全网销售额达
亿元,相当于全国人均消费
元,同比增长
,监测参与“双十一”狂欢大促销的
家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校
名大一学生中采用男女分层抽样,分别随机调查了若干个男生和
个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足
元的同学中随机抽取
人发放纪念品,则
人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查
人,求其中“剁手党”人数的分布列和期望.







男生直方图
分组(百元) | 男生人数 | 频率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合计 | | ![]() |

女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足



(3)用频率估计概率,从全市所有高校大一学生中随机调查

某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划.为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15分,平均得分为15分,得分的方差为46.3.执行训练后也统计了10场比赛的得分,成绩茎叶图如图所示:

(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;
(2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?

(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;
(2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?
某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1) 试估计哪个班级学生平均上网的时间较长。
(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
(1) 试估计哪个班级学生平均上网的时间较长。
(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设
,现从所有的“阅读达人”里任取2人,求至少有1人来自甲组的概率;
(Ⅲ)记甲组阅读量的方差为
. 若在甲组中增加一个阅读量为10的学生,并记新得到的甲组阅读量的方差为
,试比较
,
的大小.(结论不要求证明)
(注:
,其中
为数据
的平均数)

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设

(Ⅲ)记甲组阅读量的方差为




(注:



中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )


A.6 | B.5 | C.4 | D.2 |
为全面地了解学生对任课教师教学的满意程度,特在某班开展教学调查.采用简单随机抽样的办法,从该班抽取20名学生,根据他们对语文、数学教师教学的满意度评分(百分制),绘制茎叶图如图.设该班学生对语文、数学教师教学的满意度评分的中位数分别为
,则( )



A.![]() | B.![]() | C.![]() | D.无法确定 |
我校某数学老师这学期分别用
两种不同的教学方式在高一甲、乙两个班(人数均相同,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)进行教学实验,现随机抽取甲、乙两班各20名学生的数学期末考试成绩,并作出茎叶图如下:
(1)依茎叶图判断哪个班的平均分高?
(2)现从甲班所抽数学成绩不低于80分的同学中随机抽取三名同学,事件
表示“抽到成绩为86分的同学至少1名”,求
.
(3)学校规定:成绩不低于85分的为优秀,完成分类变量成绩教学方式的
列联表,并判断“能否在犯错误的概率不超过
的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
(参考公式:
,其中
)

甲班 | | 乙班 |
2 | 9 | 0 1 5 6 8 |
6 6 4 3 2 | 8 | 0 1 2 5 6 6 8 9 |
1 | 7 | 3 6 8 |
8 3 2 2 | 6 | 5 7 9 9 |
3 2 2 1 1 | 5 | |
9 8 7 7 | 4 | |
| 甲班 | 乙班 | 合计 |
优秀 | | | |
不优秀 | | | |
合计 | 20 | 20 | 40 |
(1)依茎叶图判断哪个班的平均分高?
(2)现从甲班所抽数学成绩不低于80分的同学中随机抽取三名同学,事件


(3)学校规定:成绩不低于85分的为优秀,完成分类变量成绩教学方式的


下面临界值表仅供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


某班级为了提高考试的做卷效率,提出了考试的两种做卷方式,为比较两种做卷方式的效率,选取50名学生,将他们随机分成两组,每组25人.第一组学生用第一种做卷方式:从前往后的顺序做;第二组学生用第二种做卷方式:先做简单题,再做难题.根据学生的考试分数(单位:分)绘制了如下茎叶图:

(1)根据茎叶图判断哪种做卷方式的效率更高?并说明理由;
(2)求50名学生的考试分数的中位数
,并将考试分数超过
和不超过
的学生人数填入下面的列联表:
(3)根据(2)中的列联表,能否在犯错误的概率不超过0.01的情况下认为两种做卷方式的效率有差异?
附:
.

(1)根据茎叶图判断哪种做卷方式的效率更高?并说明理由;
(2)求50名学生的考试分数的中位数



| 超过![]() | 不超过![]() | 总计 |
第一种做卷方式 | | | |
第二种做卷方式 | | | |
总计 | | | |
(3)根据(2)中的列联表,能否在犯错误的概率不超过0.01的情况下认为两种做卷方式的效率有差异?
附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
如图所示,茎叶图记录了甲、乙两组各4名学生完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组学生的平均成绩相同,乙组某个数据的个位数字模糊,记为
.则下列命题正确的是( )



A.甲组学生的成绩比乙组稳定 |
B.乙组学生的成绩比甲组稳定 |
C.两组学生的成绩有相同的稳定性 |
D.无法判断甲、乙两组学生的成绩的稳定性 |