- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- + 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两个小组各
名学生的数学测试成绩的茎叶图如图所示.现从这
名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件
,“抽出的学生数学测试成绩不低于
分”记为事件
.则
的值是______ .







某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据以上数据完成下列2×2的列联表:
(3)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?
附:
.

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据以上数据完成下列2×2的列联表:
| 主食蔬菜 | 主食肉类 | 合计 |
50岁以下 | | | |
50岁以上 | | | |
合计 | | | |
(3)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?
附:

![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010] | 0.005 | 0.001 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的
次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是
.则下列说法正确的是( )




A.![]() |
B.![]() |
C.![]() |
D.![]() |
甲乙两位同学整理了某学科高三以来9次考试的成绩(甲缺席了其中3次考试,只有6次成绩),得到如下茎叶图.

(1)若用分层抽样的方法从两人的15个成绩选取5个评估,应选取甲的几次成绩?若分层抽样时对甲的成绩采用随机抽取,求选取到的甲的成绩至少有一次高于85分的概率;
(2)试通过表中的所有数据,从平均水平和稳定性来评判两位同学该学科的考试成绩.

(1)若用分层抽样的方法从两人的15个成绩选取5个评估,应选取甲的几次成绩?若分层抽样时对甲的成绩采用随机抽取,求选取到的甲的成绩至少有一次高于85分的概率;
(2)试通过表中的所有数据,从平均水平和稳定性来评判两位同学该学科的考试成绩.
随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100分)绘制了如下茎叶图:

(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;
(2)求50名学员满意度评分的中位数
,并将评分不超过
、超过
分别视为“基本满意”、“非常满意”两个等级.
(i)利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?
(ii)根据茎叶图填写下面的列联表:

并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?
附:

(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;
(2)求50名学员满意度评分的中位数



(i)利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?
(ii)根据茎叶图填写下面的列联表:

并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?
附:

A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是
,
,观察茎叶图,下列结论正确的是







A.![]() | B.![]() |
C.![]() | D.![]() |
现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为
,则甲(乙)的高三对应的考试成绩预计为
(若
>100.则取
为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义
为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.

(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)
(Ⅱ)求
的分布列和数学期望.






(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)
(Ⅱ)求

某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是( )


A.![]() |
B.甲得分的方差是736 |
C.乙得分的中位数和众数都为26 |
D.乙得分的方差小于甲得分的方差 |
某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间
内(单位:
),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在
,
的苹果中随机抽取6个,则从
,
的苹果中各抽取几个?
(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在
内的概率;
(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案
:所有苹果均以5.5元/千克收购;方案
:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在
内按35元/箱收购,在
内按45元/箱收购,在
内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.



(Ⅰ)按分层抽样的方法从单果直径落在




(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在

(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案




