- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 系统抽样的特征及适用条件
- 等距抽样的组距与编号
- 非等距的系统抽样问题
- 写出系统抽样过程
- 系统抽样的概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品生产线上,一天内每隔60分钟抽取一件产品,则该抽样方法为①;某中学从30名机器人爱好者中抽取3人了解学习负担情况,则该抽取方法为②,那么
A.①是系统抽样,②是简单随机抽样 | B.①是分层抽样,②是简单随机抽样 |
C.①是系统抽样,②是分层抽样 | D.①是分层抽样,②是系统抽样 |
(2017·合肥市质检)某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在区间
的人数为( )

A.10 | B.11 | C.12 | D.13 |
总体由编号为
的50各个体组成,利用随机数表(以下摘取了随机数表中第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为__________.
66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 90
57 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 27 41 14 86

66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 90
57 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 27 41 14 86
某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为



A.分层抽样,简单随机抽样 | B.简单随机抽样,分层抽样 |
C.分层抽样,系统抽样 | D.简单随机抽样,系统抽样 |
某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从
进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为()

A.16 | B.17 | C.18 | D.19 |
为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为( )
A.2 | B.3 | C.4 | D.5 |
某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是( ) .
A.简单随机抽样 | B.系统抽样 | C.分层抽样 | D.非上述答案 |
某学校老师中,
型血有36人、
型血有24人、
型血有12人,现需要从这些老师中抽取一个容量为
的样本.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量减少一个,则在采用系统抽样时,需要在总体中剔除2个个体,则样本容量
可能为(
)






A.![]() | B.![]() | C.![]() | D.![]() |
一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为i,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为i+k或i+k-10(i+k≥10),则当i=7时,所抽取的第6个号码是________.
现要完成下列3项抽样调查:①我校共有320名教职工,其中教师270名,行政人员20名,后勤人员30名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为32的样本②学术报告厅有16排,每排有22个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请16名听众进行座谈③从高二年级24个班级中抽取3个班进行卫生检查.较为合理的抽样方法是( )
A.①简单随机抽样②系统抽样③分层抽样 | B.①简单随机抽样②分层抽样③系统抽样 |
C.①系统抽样②简单随机抽样③分层抽样 | D.①分层抽样②系统抽样③简单随机抽样 |