- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 系统抽样的特征及适用条件
- 等距抽样的组距与编号
- 非等距的系统抽样问题
- 写出系统抽样过程
- 系统抽样的概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某运动队由足球运动员18人,篮球运动员12人,乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为
的样本,若分别采用系统抽样法和分层抽样法,都不用删除个体,那么样本容量
的最小值为


A.6 | B.12 | C.18 | D.24 |
从编号1~100的100位同学中用系统抽样的方法随机抽取5位同学了解他们的学习状况,若编号为53的同学被抽到,则下面4位同学的编号被抽到的是( )
A.3 | B.23 | C.83 | D.93 |
下列说法正确的是( )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为
,结果这天没下雨,这表明天气预报并不科学.
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程
中,当解释变量
每增加1个单位时,预报变量
增加0.1个单位.
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为

③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程



A.①② | B.③④ | C.①③ | D.②④ |
某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号
号,并分组,第一组
号,第二组
号,
,第十组
号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为______ 的学生.





总体由编号为01,02,03,
,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A.05 | B.09 | C.07 | D.20 |
现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查;
②科技报告厅有32排座位,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,邀请32名听众进行座谈;
③某中学高三年级有12个班,文科班4个,理科班8个,为了了解全校学生对知识的掌握情况,拟抽取一个容量为50的样本.
较为合理的抽样方法是 ( )
A.①简单随机抽样,②系统抽样,③分层抽样 |
B.①简单随机抽样,②分层抽样,③系统抽样 |
C.①系统抽样,②简单随机抽样,③分层抽样 |
D.①分层抽样,②系统抽样,③简单随机抽样 |
下列说法中错误的是( )
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为![]() ![]() ![]() ![]() |
B.一组数据的方差为![]() ![]() ![]() ![]() |
C.若两个随机变量的线性相关性越强,则相关系数![]() |
D.若一组数据1,![]() ![]() |
下列说法中正确的是( )
A.先把高二年级的![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
B.线性回归直线![]() ![]() |
C.若两个随机变量的线性相关性越强,则相关系数![]() ![]() |
D.若一组数据![]() ![]() ![]() ![]() ![]() ![]() |
某班级有
名学生,现采取系统抽样的方法在这
名学生中抽取
名,将这
名学生随机編号
号,并分组,第一组
,第二组
,
,第十组
,若在第三组中抽得的号码为
号的学生,在第八组中抽得的号码为_____的学生.










党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村扶贫,此帮扶单位为了解该村贫困户对其所提供帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值
和方差
;
(3)在(2)条件下,若贫困户的满意度评分在
之间,则满意度等级为“A级”.运用样本估计总体的思想,现从(1)中抽到的8个样本的满意度为“A级”贫困户中随机地抽取2户,求所抽到2户的满意度评分均“超过85”的概率.(参考数据:
,
,
)
贫困户 编号 | 评分 | | 贫困户 编号 | 评分 | | 贫困户 编号 | 评分 | | 贫困户 编号 | 评分 |
1 | 78 | 11 | 88 | 21 | 79 | 31 | 93 | |||
2 | 73 | 12 | 86 | 22 | 83 | 32 | 78 | |||
3 | 81 | 13 | 95 | 23 | 72 | 33 | 75 | |||
4 | 92 | 14 | 76 | 24 | 74 | 34 | 81 | |||
5 | 86 | 15 | 80 | 25 | 93 | 35 | 89 | |||
6 | 85 | 16 | 78 | 26 | 66 | 36 | 77 | |||
7 | 79 | 17 | 88 | 27 | 80 | 37 | 81 | |||
8 | 84 | 18 | 82 | 28 | 83 | 38 | 76 | |||
9 | 63 | 19 | 76 | 29 | 74 | 39 | 85 | |||
10 | 85 | 20 | 87 | 30 | 82 | 40 | 78 |
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值


(3)在(2)条件下,若贫困户的满意度评分在



