- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.
方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法能配对的是( )
方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法能配对的是( )
A.①Ⅰ,②Ⅱ | B.①Ⅲ,②Ⅰ | C.①Ⅱ,②Ⅲ | D.①Ⅲ,②Ⅱ |
某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼分别为
条、
条、
条、
条、
条,现从中抽取一个容量为
的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有______条.






总体由编号为01,02,03,
,49,50的50个个体组成,利用随机数表(如图,选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第5个个体的编号为________


现要完成下列3项抽样调查:
①从15种疫苗中抽取5种检测是否合格.
②某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.
③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.
较为合理的抽样方法是( )
①从15种疫苗中抽取5种检测是否合格.
②某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.
③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.
较为合理的抽样方法是( )
A.①简单随机抽样, ②分层抽样, ③系统抽样 | B.①简单随机抽样, ②系统抽样, ③分层抽样 |
C.①系统抽样,②简单随机抽样, ③分层抽样 | D.①分层抽样,②系统抽样, ③简单随机抽样 |
某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人为“微信控”的概率.
参考数据:
参考公式:
,其中
.
| 微信控 | 非微信控 | 合计 |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人为“微信控”的概率.
参考数据:
![]() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:


某高校在2012年的自主招生考试成绩中随机抽取
名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

(1)请先求出频率分布表中
位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在
名学生中随机抽取
名学生接受
考官进行面试,求:第
组至少有一名学生被考官
面试的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 5 | ![]() |
第2组 | ![]() | ① | ![]() |
第3组 | ![]() | 30 | ② |
第4组 | ![]() | 20 | ![]() |
第5组 | ![]() | 10 | ![]() |

(1)请先求出频率分布表中

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第

(3)在(2)的前提下,学校决定在





随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题,某市创新性的采用“公建民营”的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理,计划从中抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有4号16号和22号,则下面号码中可能被抽到的号码是( )
A.9 | B.12 | C.15 | D.28 |
为庆祝中华人民共和国成立70周年,某学院欲从A,B两个专业共600名学生中,采用分层抽样的方法抽取120人组成国庆宣传团队,已知A专业有200名学生,那么在该专业抽取的学生人数为( )
A.20 | B.30 | C.40 | D.50 |
为了了解所加工的一批零件的长度,抽测了其中
个零件的长度,在这个工作中,
个零件的长度是( )


A.总体 | B.个体 | C.样本容量 | D.总体的一个样本 |
某学校高一、高二、高三年级的学生人数分别为
、
、
人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为
的样本,则应从高三年级抽取的学生人数为( )




A.![]() | B.![]() | C.![]() | D.![]() |