- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有下列调查方式:①学校为了解高一学生的数学学习情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有15人在100分以上,35人在90~100分,10人低于90分.现在从中抽取12人座谈了解情况;③运动会中工作人员为参加400m比赛的6名同学公平安排跑道.就这三个调查方式,最合适的抽样方法依次为().
A.分层抽样,系统抽样,简单随机抽样 |
B.系统抽样,系统抽样,简单随机抽样 |
C.分层抽样,简单随机抽样,简单随机抽样 |
D.系统抽样,分层抽样,简单随机抽样 |
已知某运动员每次射击击中目标的概率为80%.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率.先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )
A.0.852 | B.0.8192 | C.0.8 | D.0.75 |
《朗读者》以精美的文字,最平实的情感读出文字背后的价值,感染了众多听众,中央电视台在2018年推出了《朗读者第二季》,电视台节目组要从2018名观众中抽取50名幸运观众.先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样方法抽取50人,则在2018人中,每个人被抽取的可能性 ( )
A.都相等,且为![]() | B.都相等,且为![]() | C.均不相等 | D.不全相等 |
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法从甲、乙两组中共抽取3名工人进行技术考核.
(1)求从甲、乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工人的概率;
(3)记X表示抽取的3名工人中男工人人数,求X的分布列和数学期望.
(1)求从甲、乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工人的概率;
(3)记X表示抽取的3名工人中男工人人数,求X的分布列和数学期望.
某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有
人,则该样本的老年教师人数为( )

类别 | 人数 |
老年教师 | ![]() |
中年教师 | ![]() |
青年教师 | ![]() |
合计 | ![]() |
A.![]() | B.![]() | C.![]() | D.![]() |
某校校园艺术节活动中,有
名学生参加了学校组织的唱歌比赛,他们比赛成绩的茎叶图如图所示,将他们的比赛成绩从低到高编号为
号,再用系统抽样方法抽出
名同学周末到某音乐学院参观学习.则样本中比赛成绩不超过
分的学生人数为( )






A.![]() | B.![]() | C.![]() | D.不确定 |