- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( )
A.0795 | B.0780 | C.0810 | D.0815 |
某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间
的为一等品;指标在区间
的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;
该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20元
甲种生产方式每生产一件零件
无论是一等品还是二等品
的成本为10元,乙种生产方式每生产一件零件
无论是一等品还是二等品
的成本为18元
将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?











某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了
位学生在第一学期末的数学成绩数据,样本统计结果如下表:
(1)求
的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于
分的学生中抽取
名学生,再从这
名学生中选
人,求至少有一个学生的数学成绩是在
的概率.

分组 | 频数 | 频率 |
![]() | ![]() | |
![]() | | ![]() |
![]() | | ![]() |
![]() | | ![]() |
![]() | ![]() | |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求

(2)如果用分层抽样的方法从数学成绩小于





四川省阆中中学某部根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2018春季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高
学校要求每位学生必须参加,且只参加其中一项,学校780名同学参加各运动项目人数统计如下条形图:

其中参加跑步类的人数所占频率为
,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.
1
求条形图中m和n的值以及抽取的13人中参加200米的学生人数;
2
现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X,求离散型随机变量X的分布列与数学期望.


其中参加跑步类的人数所占频率为





某校为了解学生学习的情况,采用分层抽样的方法从高一
人、高二
人、高三
人中,抽取
人进行问卷调查.已知高一被抽取的人数为
,那么高三被抽取的人数为_______ .





某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第5行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( )
84421 25331 34578 60736 25300 73286 23457 88907 23689 60804
32567 80843 67895 35577 34899 48375 22535 57832 45778 92345
84421 25331 34578 60736 25300 73286 23457 88907 23689 60804
32567 80843 67895 35577 34899 48375 22535 57832 45778 92345
A.328 | B.623 | C.457 | D.072 |
随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:

(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记
表示总收入,
表示应纳的税,试写出调整前后
关于
的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

①先从收入在
及
的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用
表示抽到作为宣讲员的收入在
元的人数,
表示抽到作为宣讲员的收入在
元的人数,随机变量
,求
的分布列与数学期望;
②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?

(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记




(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

①先从收入在








②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
将参加数学竞赛的1000名学生编号如下:0001,0002, 0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,那么抽取的第41个号码为________.