- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年级抽取的学生人数为
| 初一年级 | 初二年级 | 初三年级 |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
A.24 | B.18 | C.16 | D.12 |
福利彩票“双色球”中红色球的号码由编号为
的33个个体组成,小明利用如图的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第7列和第8列数字开始由左到右依次选取两个数字,则选出来的第4个红色球的编号为( )



A.24 | B.06 | C.20 | D.17 |
某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,
22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )
22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )
A.这种抽样方法是分层抽样 |
B.这种抽样方法是系统抽样 |
C.这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差 |
D.该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数 |
从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性( )
A.不全相等 | B.均不相等 |
C.都相等,且为![]() | D.都相等,且为![]() |
春节期间,由于高速公路继续实行小型车免费,因此高速公路上车辆较多,某调查公司在某城市从七座以下小型汽车中按进入服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图的频率分布直方图.
(Ⅰ)此调查公司在采样中,用到的是什么抽样方法?
(Ⅱ)求这40辆小型车辆车速的众数、中位数以及平均数的估计值;
(Ⅲ)若从车速在[60,70)的车辆中任抽取2辆,求至少有一辆车的车速在[65,70)的概率.
(Ⅰ)此调查公司在采样中,用到的是什么抽样方法?
(Ⅱ)求这40辆小型车辆车速的众数、中位数以及平均数的估计值;
(Ⅲ)若从车速在[60,70)的车辆中任抽取2辆,求至少有一辆车的车速在[65,70)的概率.

高三(2)班现有64名学生,随机编号为0,1,2,
,63,依编号顺序平均分成8组,组
号依次为1,2,3,
,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.

号依次为1,2,3,

某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为
的样本,其中高中生有24人,那么
等于( )


A.12 | B.18 | C.24 | D.36 |
某移动支付公司随机抽取了100名移动支付用户进行调查,得到如下数据:
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:

![]() | 0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:

(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.
某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成
列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:
.

(1)根据茎叶图中的数据完成

| 购买意愿强 | 购买意愿弱 | 合计 |
20~40岁 | | | |
大于40岁 | | | |
合计 | | | |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:

