为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为(   )
A.①③B.①④C.②③D.②④
当前题号:1 | 题型:单选题 | 难度:0.99
从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于之间,将测量结果按如下方式分组:第一组,第二组,…,第八组,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.

(1)请补全频率分布直方图并求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在以上(含)的人数;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求
当前题号:2 | 题型:解答题 | 难度:0.99
已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84  42  17  53  31  57  24  55  06  88  77  04  74  47  67  21  76  33  50  25  83  92  12  06  76 
63  01  63  78  59  16  95  56  67  19  98  10  50  71  75  12  86  73  58  07  44  39  52  38  79 
33  21  12  34  29  78  64  56  07  82  52  42  07  44  38  15  51  00  13  42  99  66  02  79  54
(2)抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
①若在该样本中,数学成绩优秀率是30%,求ab的值;
人数
数学
优秀
良好
及格
地理
优秀
7
20
5
良好
9
18
6
及格
a
4
b
 
②在地理成绩及格的学生中,已知,求数学成绩优秀的人数比及格的人数少的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在上的频率为0.8,则估计样本在内的数据个数共为(   )
A.15B.16C.17D.19
当前题号:4 | 题型:单选题 | 难度:0.99
为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次
1
2
3
4
5
分数y(满足150)
145
83
95
72
110
 

B类
第x次
1
2
3
4
5
分数y(满足150)
85
93
90
76
101
 

C类
第x次
1
2
3
4
5
分数y(满足150)
85
92
101
100
112
 

(1)经计算己知A,B的相关系数分别为.,请计算出C学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为,利用线性回归直线方程预测该生第十次的成绩.
附相关系数,线性回归直线方程
当前题号:5 | 题型:解答题 | 难度:0.99
某单位有老年人27人,中年人54人,青年人81人.为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则老年人、中年人、青年人分别应抽取的人数是(   )
A.7,11,18B.6,12,18C.6,13,17D.7,14,21
当前题号:6 | 题型:单选题 | 难度:0.99
当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:


(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望. 附:若随机变量服从正态分布,则.
当前题号:7 | 题型:解答题 | 难度:0.99
为了了解某校学生课外时间的分配情况,拟采用分层抽样的方法从该校的高一、高二、高三这三个年级中共抽取5个班进行调查,已知该校的高一、高二、高三这三个年级分别有18、6、6个班级.
(Ⅰ)求分别从高一、高二、高三这三个年级中抽取的班级个数;
(Ⅱ)若从抽取的5个班级中随机抽取2个班级进行调查结果的对比,求这2个班级中至少有1个班级来自高一年级的概率。
当前题号:8 | 题型:解答题 | 难度:0.99
车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为10.

(1)分别求出,的值;
(2)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率;
(3)根据以上茎叶图和你所学的统计知识,分析两组技工的整体加工水平及稳定性.
(注:方差,其中为数据,,…,的平均数).
当前题号:9 | 题型:解答题 | 难度:0.99
某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4小时的概率;
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有的把握认为“该校学生的毎周平均体育运动时间与性别有关”.
 
男生
女生
总计
每周平均体育运动时间不超过4小时
 
 
 
每周平均体育运动时间超过4小时
 
 
 
总计
 
 
 
 
附:,其中.

0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879
 
当前题号:10 | 题型:解答题 | 难度:0.99