- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.

(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在
内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?







(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为



(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
如图茎叶图表示的是甲.乙两人在5次综合测评中的成绩,其中乙中的两个数字被污损,且已知甲,乙两人在
次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
在某次数学考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班样本成绩的茎叶图如图所示.

(1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求
的值;
(2)从样本中任意抽取3名学生的成绩,若至少有两名学生的成绩相同的概率大于
,则该班成绩判断为可疑.试判断甲班的成绩是否可疑?并说明理由.

(1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求

(2)从样本中任意抽取3名学生的成绩,若至少有两名学生的成绩相同的概率大于

从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___
2016年1月6日,中国物流与采购联合会正式发布了中国仓储指数,中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的一套指数体系,如图所示的折线图是2019年甲企业和乙企业的仓储指数走势情况.根据该折线图,下列结论中不正确的是( )


A.2019年1月至4月甲企业的仓储指数比乙企业的仓储指数波动大 |
B.甲企业2019年的年平均仓储指数明显低于乙企业2019年的年平均仓储指数 |
C.两企业2019年的最大仓储指数都出现在4月份 |
D.2019年7月至9月乙企业的仓储指数的增幅高于甲企业 |
每当《我心永恒》这首感人唯美的歌曲回荡在我们耳边时,便会想起电影《泰坦尼克号》中一暮暮感人画面,让我们明白了什么是人类的“真、善、美”.为了推动我市旅游发展和带动全市经济,更为了向外界传递遂宁人民的“真、善、美”.我市某地将按“泰坦尼克号”原型
比例重新修建.为了了解该旅游开发在大众中的熟知度,随机从本市
岁的人群中抽取了
人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该旅游开发将在我市哪个地方建成?”,统计结果如下表所示:

(1)求出
的值;
(2)从第
组回答正确的人中用分层抽样的方法抽取
人,求第
组每组抽取的人数;
(3)在(2)中抽取的
人中随机抽取
人,求所抽取的人中恰好没有年龄在
段的概率.



组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |

(1)求出

(2)从第



(3)在(2)中抽取的



“有黑扫黑、无黑除恶、无恶治乱”,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,
表示第
天主动投案的人数,得到统计表格如下:
(1)若
与
具有线性相关关系,请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)判定变量
与
之间是正相关还是负相关.(写出正确答案,不用说明理由)
(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:
,
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若





(2)判定变量


(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:


如图是某超市一年中各月份的收入与支出
单位:万元
情况的条形统计图
已知利润为收入与支出的差,即利润
收入一支出,则下列说法正确的是









A.利润最高的月份是2月份,且2月份的利润为40万元 |
B.利润最低的月份是5月份,且5月份的利润为10万元 |
C.收入最少的月份的利润也最少 |
D.收入最少的月份的支出也最少 |