有一批种子的发芽率为,每粒种子能成长为幼苗的概率为,则在这批种子中,出芽后的幼苗成活率为________
当前题号:1 | 题型:填空题 | 难度:0.99

某公司有电子产品件,合格率为96%,在投放市场之前,决定对该产品进行最后检验,为了减少检验次数,科技人员采用打包的形式进行,即把件打成一包,对这件产品进行一次性整体检验,如果检测仪器显示绿灯,说明该包产品均为合格品;如果检测仪器显示红灯,说明该包产品至少有一件不合格,须对该包产品一共检测了
(1)探求检测这件产品的检测次数
(2)如果设,要使检测次数最少,则每包应放多少件产品?
当前题号:2 | 题型:解答题 | 难度:0.99
给出以下变量①吸烟,②性别,③宗教信仰,④国籍
其中属于分类变量的有________
当前题号:3 | 题型:填空题 | 难度:0.99
生产某一配件需经过三道工序,设第一、二、三道工序的次品率分别为,且各道工序互不影响,则加工出来的配件的次品率为   .
当前题号:4 | 题型:填空题 | 难度:0.99

甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹。根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2。
设甲、乙的射击相互独立。
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率。
当前题号:5 | 题型:解答题 | 难度:0.99
(本小题满分12分)
甲、乙两人各射击一次,击中目标的概率分别是假设两人射击是否击中目标,相互
之间没有影响;每人各次射击是否击中目标,相互之间也没有影响
(1)甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
⑶设甲连续射击3次,用表示甲击中目标时射击的次数,求的数学期望.(结果可以用分数表示)
当前题号:6 | 题型:解答题 | 难度:0.99
在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是()
A.[0.4,1)B.(0,0.4]C.(0,0.6]D.[0.6,1)
当前题号:7 | 题型:单选题 | 难度:0.99
某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).

(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数的分布列及数学期望;
(II)求这名同学被该大学录取的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大.
(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数的数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99