刷题首页
题库
高中数学
题干
甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是
,甲、乙、丙三人都能通过测试的概率是
,甲、乙、丙三人都不能通过测试的概率是
,且乙通过测试的概率比丙大.
(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数
的数学期望
.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-29 09:20:12
答案(点此获取答案解析)
同类题1
(本小题满分12分)
某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为
,二等品率为
;B型产品的一等品率为
,二等品率为
。生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元。设生产各件产品相互独立。
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记
(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求
的分布列及期望值.
同类题2
高一年级某个班分成8个小组,利用假期参加社会公益服务活动
每个小组必须全员参加
,参加活动的次数记录如下:
组别
参加活动次数
3
2
4
3
2
4
1
3
Ⅰ
从这8个小组中随机选出2个小组在全校进行活动汇报
求“选出的2个小组参加社会公益服务活动次数相等”的概率;
Ⅱ
记每个小组参加社会公益服务活动的次数为X.
求X的分布列和数学期望EX;
至
几小组每组有4名同学,
小组有5名同学记“该班学生参加社会公益服务活动的平均次数”为
,写出
与EX的大小关系
结论不要求证明
.
同类题3
广州市为了做好新一轮文明城市创建工作,有关部门为了解市民对《广州市创建全国文明城市小知识》的熟知程度,对下面两个问题进行了调查:
问题一:《广州市民“十不”行为规范》有哪“十不”?
问题二:广州市“一约三则”的内容是什么?
调查结果显示,
年龄段的市民回答第一个问题的正确率为
,
年龄段的市民回答第二个问题正确率为
.
为使活动得到市民更好的配合,调查单位采取如下激励措施:正确回答问题一者奖励价值20元的礼物;正确回答问题二奖励价值30元的礼物,有一家庭的两成员(大人42岁,孩子13岁)参与了此项活动,小孩回答第一个问题,大人回答第二个问题,问这个家庭获得礼物价值的数学期望是多少?
同类题4
(本小题满分10分)某班组织的数学文化节活动中,通过抽奖产生了
名幸运之星.这
名幸运之星可获得
、
两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品,抛掷点数小于
的获得
奖品,抛掷点数不小于
的获得
奖品.
(1)求这
名幸运之星中获得
奖品的人数大于获得
奖品的人数的概率;
(2)设
、
分别为获得
、
两种奖品的人数,并记
,求随机变量
的分布列及数学期望.
同类题5
新高考方案的考试科目简称“
”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.
(Ⅰ)求某同学选修“物理、化学和生物”的概率;
(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是
,通过每门再选科目的概率都是
,且各门课程通过与否相互独立.用
表示该同学所选的3门课程在这次“会考”中通过的门数,求随机变量
的概率分布和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量的均值与方差
离散型随机变量的均值
求离散型随机变量的均值