- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两人独立地解同一问题,甲解出这个问题的概率
,乙解出这个问题的概率是
,那么其中至少有1人解出这个问题的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两人射击,甲射击一次中靶的概率是
,乙射击一次中靶的概率是
,且
是方程
的两个实根,已知甲射击5次,中靶次数的方差是
.
(1)求
,
的值;
(2)若两人各射击2次,至少中靶3次就算完成目标,则完成目标概率是多少?





(1)求


(2)若两人各射击2次,至少中靶3次就算完成目标,则完成目标概率是多少?
某校举行歌唱比赛,高一年级从6名教师中选出3名教师参加,要求李老师,王老师两名老师至少有一人参加,则参加的三名老师不同的唱歌顺序的种数为________.(用数字作答)
一次演出,因临时有变化,拟在已安排好的4个节目的基础上再添加2个小品节目,且2个小品节目不相邻,则不同的添加方法共有______种.
超级细菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧,痉挛,昏迷,甚至死亡.
某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有
份血液样本,每个样本取到的可能性相等,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
(1)运用概率统计的知识,若
,试求关于
的函数关系式
;
(2)若
与抗生素计量
相关,其中
是不同的正实数,满足
,对任意的
,都有
(i)证明:
为等比数列;
(ii)当
时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
,
,
,
某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有









现取其中





(1)运用概率统计的知识,若



(2)若






(i)证明:

(ii)当


参考数据:




