- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
具有线性相关关系的变量x,y,满足一组数据如表所示,若y与x的回归直线方程为
,则m的值( )

x | 0 | 1 | 2 | 3 |
y | ![]() | 1 | m | 8 |
A.4 | B.![]() | C.5 | D.6 |
从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )
A.至少有一个红球与都是红球 |
B.至少有一个红球与都是白球 |
C.恰有一个红球与恰有二个红球 |
D.至少有一个红球与至少有一个白球 |
某学校有学生500人,其中男生320人,女生180人,用分层抽样的方法抽取了一个容量为
的样本.若该样本中男生人数为16,则
______.


某玩具厂生产出一种新型儿童泡沫玩具飞机,为更精确的确定最终售价,该厂采用了多种价格对该玩具飞机进行了试销,某销售点的销售情况如下表:
从散点图可以看出,这些点大致分布在一条直线的附近,变量
,
有较强的线性相关性.
(1)求销量
关于
的回归方程;
(2)若每架该玩具飞机的成本价为5元,利用(1)的结果,预测每架该玩具飞机的定价为多少元时,总利润最大.(结果保留一位小数)
(附:
,
,
,
.)
单价![]() | 8 | 9 | 10 | 11 | 12 |
销量![]() | 40 | 36 | 30 | 24 | 20 |
从散点图可以看出,这些点大致分布在一条直线的附近,变量


(1)求销量


(2)若每架该玩具飞机的成本价为5元,利用(1)的结果,预测每架该玩具飞机的定价为多少元时,总利润最大.(结果保留一位小数)
(附:




一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对
表示“甲在
号车站下车,乙在
号车站下车”
(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(Ⅱ)求甲、乙两人同在第3号车站下车的概率;
(Ⅲ)求甲、乙两人在不同的车站下车的概率.



(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(Ⅱ)求甲、乙两人同在第3号车站下车的概率;
(Ⅲ)求甲、乙两人在不同的车站下车的概率.
甲、乙两人在相同的条件下投篮5轮,每轮甲、乙各投篮10次,投篮命中次数的情况如图所示(实线为甲的折线图,虚线为乙的折线图),则以下说法错误的是( )


A.甲投篮命中次数的众数比乙的小 |
B.甲投篮命中次数的平均数比乙的小 |
C.甲投篮命中次数的中位数比乙的大 |
D.甲投篮命中的成绩比乙的稳定 |
某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:
,其中
.
临界值表
平均每天锻炼的时间/分钟 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
总人数 | 34 | 51 | 59 | 66 | 65 | 25 |
将学生日均体育锻炼时间在

(1)请根据上述表格中的统计数据填写下面的

| 锻炼不达标 | 锻炼达标 | 合计 |
男 | | | |
女 | 40 | 160 | |
合计 | | | |
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:


临界值表
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |