- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某区要进行中学生篮球对抗赛,为争夺最后一个小组赛名额,甲、乙、丙三支篮球队要进行比赛,根据规则:每两支队伍之间都要比赛一场;每场比赛胜者得
分,负者得
分,没有平局,获得第一名的将夺得这个参赛名额.已知乙队胜丙队的概率为
,甲队获得第一名的概率为
,乙队获得第一名的概率为
.
(Ⅰ)求甲队分别战胜乙队和丙队的概率
;
(Ⅱ)设在该次比赛中,甲队得分为
,求
的分布列及期望.





(Ⅰ)求甲队分别战胜乙队和丙队的概率

(Ⅱ)设在该次比赛中,甲队得分为


(本小题满分14分)如图,
两点之间有5条网线并联,它们能通过的信息量分别为2、3、3、4、4.现从中随机任取2条网线.

(1)设选取的2条网线由
到
通过的信息总量为
,当
时,则保证信息畅通.求线路信息畅通的概率;
(2)求选取的2条网线可通过信息总量的数学期望.


(1)设选取的2条网线由




(2)求选取的2条网线可通过信息总量的数学期望.
为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过
公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过
公里.已知甲、乙乘车不超过
公里的概率分别为
,
,甲、乙乘车超过
公里且不超过
公里的概率分别为
,
.
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量
,求
的分布列与数学期望.

乘坐里程![]() ![]() | ![]() | ![]() | ![]() |
票价(单位:元) | ![]() | ![]() | ![]() |
现有甲、乙两位乘客,他们乘坐的里程都不超过








(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量


从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件
:“取出的2件产品中至多有1件是二等品”的概率
.
(Ⅰ)求从该批产品中任取1件是二等品的概率
;
(Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.


(Ⅰ)求从该批产品中任取1件是二等品的概率

(Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差
最大时,写出a,b,c的值(结论不要求证明),并求此时
的值。
(注:
,其中
为数据
的平均数)
| “厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差


(注:



(本题满分12分)在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设
分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求
依次成公差大于0的等差数列的概率;
(Ⅱ)求随机变量z的概率分布列和数学期望.

(Ⅰ)求

(Ⅱ)求随机变量z的概率分布列和数学期望.
某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为
,
;租用2小时以上且不超过3小时的概率分别为
,
,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量
,求
的分布列与数学期望.




(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量


(本小题满分12分)某军区新兵
步枪射击个人平均成绩
(单位:环)服从正态分布
,从这些个人平均成绩中随机抽取
个,得到如下频数分布表:
(Ⅰ)求
和
的值(用样本数学期望、方差代替总体数学期望、方差);
(Ⅱ)如果这个军区有新兵
名,试估计这个军区新兵
步枪射击个人平均成绩在区间
上的人数
[参考数据:
,若
,则
,
,
].




![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |


(Ⅱ)如果这个军区有新兵



[参考数据:




