- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- + 直线与圆的位置关系
- 直线与圆的位置关系
- 圆的切线方程
- 圆的弦长与弦心距
- 直线与圆的应用
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线
的准线方程和焦点坐标
;
(2)若
,求证:直线
恒过定点;
(3)当
时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?






(1)求抛物线


(2)若


(3)当






已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为
,且过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A,B两点,求|AB|的最大值。


(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A,B两点,求|AB|的最大值。
(本小题满分12分)
如图,圆
与圆
的半径都等于1,
. 过动点
分别作圆
、圆
的切线
(
分别为切点),使得|PM|=
|PN|.
试建立适当的坐标系,并求动点
的轨迹方程.
如图,圆









试建立适当的坐标系,并求动点

