- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- + 直线的交点坐标与距离公式
- 相交直线的交点坐标
- 两点间的距离公式
- 点到直线的距离公式
- 两条平行线间的距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
:
,圆A:
,点
(1)求圆上一点到直线的距离的最大值;
(2)从点B发出的一条光线经直线
反射后与圆有交点,求反射光线的斜率的取值范围.




(1)求圆上一点到直线的距离的最大值;
(2)从点B发出的一条光线经直线

公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中
,
,动点
满足
,若点
的轨迹为一条直线,则
______;若
,则点
的轨迹方程为_______________;








已知点M(a,b)在直线4x-3y+c=0上,若
的最小值为4,则实数c的值为 ( )

A.-11或9 | B.-21或19 | C.-21或9 | D.-11或19 |
已知圆C:
.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P
向该圆引一条切线,切点为M,O为坐标原点,且有
,
求使得
取得最小值的点P的坐标

(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P


求使得
