- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- + 直线的交点坐标与距离公式
- 相交直线的交点坐标
- 两点间的距离公式
- 点到直线的距离公式
- 两条平行线间的距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系内,已知
是以点
为圆心的圆上
的一点,折叠该圆两次使点
分别与圆上不相同的两点(异于点
)重合,两次的折痕方程分别为
和
,若圆
上存在点
,使得
,其中点
、
,则
的最大值为















A.7 | B.6 | C.5 | D.4 |
已知点A(4,-3)与B(2,-1)关于直线l对称,在l上有一点P,使点P到直线4x+3y-2=0的距离等于2,则点P的坐标是________.
在平面直角坐标系中,以
为极点,
轴正半轴为极轴建立极坐标系,取相同的长度单位,若曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数),设
是曲线
上任一点,
是曲线
上任一点.
(1)求
与
交点的极坐标;
(2)已知直线
,点
在曲线
上,求点
到
的距离的最大值.











(1)求


(2)已知直线





在平面直角坐标系xOy中,设直线y=-x+2与圆x2+y2=r2(r>0)交于A,B两点,O为坐标原点,若圆上一点C满足
,则r=( )

A.![]() | B.![]() | C.![]() | D.![]() |
若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB中点M到原点距离的最小值为( )
A.![]() | B.![]() | C.![]() | D.![]() |
光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.