- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在△ABC中,若已知三边长为连续三个正整数,且最大角是钝角.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.
若三角形三边长都是整数且至少有一个内角为
,则称该三角形为“完美三角形”.有关“完美三角形”有以下命题:
(1)存在直角三角形是“完美三角形”
(2)不存在面积是整数的“完美三角形”
(3)周长为12的“完美三角形”中面积最大为
;
(4)若两个“完美三角形”有两边对应相等,且它们面积相等,则这两个“完美三角形”全等.
以上真命题有______.(写出所有真命题的序号).

(1)存在直角三角形是“完美三角形”
(2)不存在面积是整数的“完美三角形”
(3)周长为12的“完美三角形”中面积最大为

(4)若两个“完美三角形”有两边对应相等,且它们面积相等,则这两个“完美三角形”全等.
以上真命题有______.(写出所有真命题的序号).
在
ABC中,A,B,C是三内角,a,b,c分别是A,B,C的对边,已知 2
(sin2A﹣sin2C)=(a﹣b)sinB,
ABC的外接圆的半径为
.
(1)求角C;
(2)求△ABC面积的最大值.




(1)求角C;
(2)求△ABC面积的最大值.