- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- 一元二次不等式
- 其他不等式
- 线性规划
- + 基本不等式
- 基本不等式(均值定理)
- 基本(均值)不等式求最值
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了净化水质,向一个池塘水中加入某种药品,加药后池塘水中该药品的浓度
(单位:
)随时间
(单位:
)的变化关系为
,则一段时间后池塘水中药品的最大浓度为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某自来水厂拟建一座平面图为矩形且面积为200m2的二级净水处理池(如图).池的深度一定,池的外围周壁建造单价为400元/m,中间的一条隔壁建造单价为100元/m,池底建造单价为60元/m2,池壁厚度忽略不计.问净水池的长为多少时,可使总造价最低?
