- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 由已知条件判断所给不等式是否正确
- 由不等式的性质比较数(式)大小
- 作差法比较不等式的大小
- 作商法比较不等式的大小
- + 由不等式的性质证明不等式
- 利用不等式求值或取值范围
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”.
(1)若
是“一阶比增函数”,求实数a的取值范围。
(2)若
是“一阶比增函数”,求证:对任意
,
,总有
;
(3)若
是“一阶比增函数”,且
有零点,求证:关于x的不等式
有解.





(1)若

(2)若




(3)若



已知函数
是定义域为
的奇函数,且当
时,
,其中
是常数.
(1)求
的解析式;
(2)求实数
的值,使得函数
,
的最小值为
;
(3)已知函数
满足:对任何不小于
的实数
,都有
,其中
为不小于
的正整数常数,求证:
.





(1)求

(2)求实数




(3)已知函数







在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集
上也可以定义一个称“序”的关系,记为“
”.定义如下:对于任意两个向量
,“
”当且仅当“
”或“
”。按上述定义的关系“
”,给出如下四个命题:
①若
,则
;
②若
,则
;
③若
,则对于任意
;
④对于任意向量
,若
,则
。
其中真命题的序号为__________







①若


②若


③若


④对于任意向量



其中真命题的序号为__________