- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- + an与Sn的关系——等比数列
- 前n项和特点
- 前n项和与通项关系
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列{an}的前n项和为Sn,且Sn=(m+1)﹣man对于任意的正整数n都成立,其中m为常数,且m<﹣1.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:
,bn=f(bn﹣1)(n≥2,n∈N),求证:数列
是等差数列,并求数列{bnbn+1}的前n项和.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:


设数列
的前n项和为
,令
,称
为数列
,
,……,
的“理想数”,已知数列
,
,……,
的“理想数”为2004,那么数列2,
,
,……,
的“理想数”为( )













A.2008 | B.2004 | C.2002 | D.2000 |