- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- + 等比数列的前n项和
- 求等比数列前n项和
- 等比数列前n项和的基本量计算
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,
,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 设该数列的前
项和为
,
规定:若
,使得
(
),则称
为该数列的“佳幂数”.
(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”;
(Ⅱ)试判断50是否为“佳幂数”,并说明理由;
(III)(i)求满足
>70的最小的“佳幂数”
;
(ii)证明:该数列的“佳幂数”有无数个.



规定:若






(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”;
(Ⅱ)试判断50是否为“佳幂数”,并说明理由;
(III)(i)求满足


(ii)证明:该数列的“佳幂数”有无数个.