- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等差数列及其通项公式
- + 等差中项
- 求等差中项
- 等差中项的应用
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.问几天后两鼠相遇?( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知数列{an}的前n项和
.
(1)求数列{an}的通项公式an;
(2)设数列{bn}的前n项和为Tn,满足b1=1,
.
①求数列{bn}的通项公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差数列,求m+n的最小值.

(1)求数列{an}的通项公式an;
(2)设数列{bn}的前n项和为Tn,满足b1=1,

①求数列{bn}的通项公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差数列,求m+n的最小值.