- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 数列的概念及辨析
- 根据规律填写数列中的某项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
是直线
上的
个不同的点(
,
、
,均为非零常数),其中数列
为等差数列.
(1)求证:数列
是等差数列;
(2)若点
是直线
上一点,且
,求证:
;
(3)设
,且当
时,恒有
(
和
都是不大于
的正整数,且
)试探索:若
为直角坐标原点,在直线
上是否存在这样的点
,使得
成立?请说明你的理由.










(1)求证:数列

(2)若点




(3)设











下列命题中,正确的是_________ .(写出所有正确命题的序号)
①在直角三角形中,三条边的长成等差数列的充要条件是它们的比为
;
②设
是等比数列
的前
项和,则公比
是数列
、
、
成等差数列的充分不必要条件;
③若数列
满足
,
,则
;
④在数列
中,若
、
都是正整数,且
,
,
,
,
,则称
为“绝对差数列”.若一个数列为“绝对差数列”,则此数列必含有为零的项.
①在直角三角形中,三条边的长成等差数列的充要条件是它们的比为

②设







③若数列




④在数列









已知数集
具有性质
:对任意的
,
,使得
成立.
(Ⅰ)分别判断数集
与
是否具有性质
,并说明理由;
(Ⅱ)求证
;
(Ⅲ)若
,求数集
中所有元素的和的最小值.






(Ⅰ)分别判断数集



(Ⅱ)求证

(Ⅲ)若


数列
中,若
,则下列命题中真命题个数是( )
(1)若数列
为常数数列,则
;
(2)若
,数列
都是单调递增数列;
(3)若
,任取
中的
项
构成数列
的子数
(
),则
都是单调数列.


(1)若数列


(2)若


(3)若








A.![]() | B.![]() | C.![]() | D.![]() |
称正整数集合
具有性质
:如果对任意的
、
,
与
两数中至少有一个属于A.
(1)分别判断集合
与
是否具有性质
;
(2)设正整数集合
具有性质
,证明:对任意
(
),
都是
的因数;
(3)求
时
的最大值








(1)分别判断集合



(2)设正整数集合







(3)求

